1. Silva F, Khokhar SS, Williams DM, et al. Short total synthesis of ajoene. Angew Chem Int Ed Engl. 2018;57(38):12290‑12293. doi:10.1002/anie.201808605.
2. Rose P, Moore PK, Whiteman M, Zhu YZ. An appraisal of developments in allium sulfur chemistry: expanding the pharmacopeia of garlic. Molecules. 2019;24(21):4006. doi:10.3390/molecules24214006.
3. Bhatwalkar SB, Mondal R, Krishna SBN, Adam JK, Govender P, Anupam R. Antibacterial properties of organosulfur compounds of garlic (Allium sativum). Front Microbiol. 2021;12:613077. doi:10.3389/fmicb.2021.613077.
4. Nakamoto M, Kunimura K, Suzuki JI, Kodera Y. Antimicrobial properties of hydrophobic compounds in garlic: Allicin, vinyldithiin, ajoene and diallyl polysulfides. Exp Ther Med. 2020;19(2):1550‑1553. doi:10.3892/etm.2019.8388.
5. Hussein HJ, Hameed IH, Hadi MY. A review: anti‑microbial, anti‑inflammatory effect and cardiovascular effects of garlic: Allium sativum. Res J Pharm Tech. 2017;10(11):4069‑4078. doi:10.5958/0974‑360X.2017.00738.7.
6. Choi JA, Cho SN, Lim YJ, et al. Enhancement of the antimycobacterial activity of macrophages by ajoene. Innate Immun. 2018;24(1):79‑88. doi:10.1177/1753425917747975.
7. Washiya, Y, Nishikawa T, Fujino T. Enhancement of intestinal IgA production by ajoene in mice. Biosci, Biotech, and Biochem. 2013;77(11):2298‑2301. doi:10.1271/bbb.130408.
8. Rouf R, Uddin SJ, Sarker DK, et al. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: a systematic update of pre‑clinical and clinical data. Trends Food Sci Technol. 2020;104:219‑234. doi:10.1016/j.tifs.2020.08.006.
9. Li G, Ma X, Deng L, et al. Fresh garlic extract enhances the antimicrobial activities of antibiotics on resistant strains in vitro. Jundishapur J Microbiol. 2015;8(5):e14814. doi:10.5812/jjm.14814.
10. El‑Saber Batiha G, Magdy Beshbishy A, G. Wasef L, et al. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): a review. Nutrients. 2020;12(3):872. doi:10.3390/nu12030872.
11. Foroutan‑Rad M, Tappeh KH, Khademvatan S. Antileishmanial and immunomodulatory activity of Allium sativum (garlic). J Evid Based Complementary Altern Med. 2017;22(1):141‑155. doi:10.1177/2156587215623126.
12. Sasi M, Kumar S, Kumar M, et al. Garlic (Allium sativum L.) bioactives and its role in alleviating oral pathologies. Antioxidants (Basel). 2021;10(11):1847. doi:10.3390/antiox10111847.
13. Wang J, Zhang X, Lan H, Wang W. Effect of garlic supplement in the management of type 2 diabetes mellitus (T2DM): a meta‑analysis of randomized controlled trials. Food Nutr Res. 2017;61(1):1377571. doi:10.1080/16546628.2017.1377571.
14. Khatua TN, Dinda AK, Putcha UK, Banerjee SK. Diallyl disulfide ameliorates isoproterenol induced cardiac hypertrophy activating mitochondrial biogenesis via eNOS‑Nrf2‑Tfam pathway in rats. Biochem Biophys Rep. 2015;5:77‑88. doi:10.1016/j.bbrep.2015.11.008.
15. He H, Ma Y, Huang H, et al. A comprehensive understanding about the pharmacological effect of diallyl disulfide other than its anti‑carcinogenic activities. Eur J Pharmacol. 2021;893:173803. doi:10.1016/j.ejphar.2020.173803.
16. Lv C, Wang C, Li P, et al. Effect of garlic organic sulfides on gene expression profiling in hepg2 cells and its biological function analysis by ingenuity pathway analysis system and bio‑plex‑based assays. Mediators Inflamm. 2021;2021:7681252. doi:10.1155/2021/7681252.
17. Shang A, Cao SY, Xu XY, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods. 2019;8(7):246. doi:10.3390/foods8070246.
18. Lawson LD, Hunsaker SM. Allicin bioavailability and bioequivalence from garlic supplements and garlic foods. Nutrients. 2018;10(7):812. doi:10.3390/nu10070812.